The Ultimate Guide
React dApps

Eric Morgan

Version v0.0.001, Dec. 30, 2021

Table of Contents

. Introduction

3.
4.
3.
6.
7.
8.
9.

. Setup

2.1. Install MetaMask

2.2. Install Hardhat

Project Structure

Unit Testing

Libraries

Data Model

Components

Client API

Miscellaneous

9.1. Wallet Interaction
9.1.1. connectWallet
9.1.2. getCurrentWallet
9.1.3. getCurrentWallet
9.1.4. switchToNetwork
9.1.5. addNetwork
9.1.6. React Hook
9.1.7. useWallet Usage

9.2. ERC-20 Interaction

9.3. ERC-721 Interaction

10. User Authentication

11.
12.
13.

Firebase Functions
Database Security
Deployment

14. Miscellaneous

15.
16.
17.

Part 2
Sample App: NFT Minting Site
Sample App: Coin Exchange

Appendix A: Code Reference

A.1. WalletUtils
A.2. useWallet

© © 00 3 O U b= W DN N N =

WO NN NDNDDNIDNDIDNIDRNDNIDN R R B B B BB o R,
R © © 0 9 & U1 b W N P © 00 3 b W W N -, -

Chapter 1. Introduction

Chapter 2. Setup
2.1. Install MetaMask

2.2. Install Hardhat

* Configure artifacts to build into the UI folder

Chapter 3. Project Structure

Chapter 4. Unit Testing

I am putting unit testing so close to the beginning of the book to stress how important they are.
Once your contract is deployed, it cannot be changed, so you should make an effort to test every

possible piece of functionality to ensure it’s working properly.

Explain how to run unit tests on an actual testnet (rather than locally)

Chapter 5. Libraries

Chapter 6. Data Model

Chapter 7. Components

Chapter 8. Client API

Chapter 9. Miscellaneous

Open Zeppelin Contracts: I strongly recommend sticking to these as much as you can. They have
been tested and are standardized.

Flattening Contracts

Verifying Contracts

Keep your private keys private at all costs. Do not share them with anyone. If you
are using source control (such as Github), take care to not commit any private keys
to your repository.

Testing on Local/TestNet/MainNet
IPFS
OpenSea

Glossary/Random Tidbits

ABI standard for Application Binary Interface. Each Smart Contract has an ABI

o which defines the interface exposed by the Smart Contract. The ABI is often
needed when trying to interact with a Smart Contract from a JavaScript
framework.

EtherScan is a website that allows you to view the transactions made by an address

o on the network. That address could be for a Smart Contract or for an individual
wallet. Other networks will have a similar website, such as PolygonScan for the
Polygon network.

TODO: Add more to this NOTE: ERC20 tokens have a property called decimals. When you are
interacting with these tokens, be sure to include the correct number of "decimals".

o TODO: Explain ERC20 approvals

o TODO: Explain onlyOwner

9.1. Wallet Interaction

Users will need to connect their wallets in order to perform any transactions in your application.
We will set up some basic functions to allow us to interact with a user’s wallet. For this guide, we
will use the MetaMask wallet. MetaMask injects an API into the window.ethereum property and this is
how we will be able to interact with MetaMask. You can check the MetaMask documentation
(https://docs.metamask.io/guide/) for more technical details.

https://docs.metamask.io/guide/

There are libraries out there that provide additional functionality such as working
o with multiple wallets and can simply be imported into your application. But for
simplicity and learning purposes, we will build our own.

The functionality we want to implement is:

e Connect to a wallet
e Disconnect from a wallet
¢ Add a network to a wallet

» Switch to a network
Create a new file called WalletUtils.ts with the following stub functions:

WalletUtils.ts
{ MetaMaskInpageProvider } from "@metamask/providers";
global {

Window {
ethereum:

0O N O Ul B WN =

WalletUtils {

connectWallet(): Promise<

getCurrentWallet(): Promise<

switchToNetwork(chainId: , rpeUrl:): Promise

addNetwork(chainId: , rpeUrl:): Promise<

Before implementing these functions, let’s take a quick review of the code.

10

{ MetaMaskInpageProvider } from "@metamask/providers";

global {
Window {
ethereum:

MetaMask injects window.ethereum so this code is grabbing the types for ethereum and specifying that
the window object will have a property called ethereum. Without this, TypeScript would give us an
error and we wouldn’t get any intellisense.

We are creating a class with all static methods simply as a way of organizing the code. When we
use the functions, we will use them like: WalletUtils.connectWallet(). We have also made all of the
functions async so that we can use await to get their results.

Now let’s implement each function.

9.1.1. connectWallet

In connectWallet, we will return either null or the wallet address. If you’d like, you can return an
object with a boolean if connecting was successful or not, but for simplicity, we will just use null to
indicate that the connection could not be made.

WalletUtils.ts

connectWallet(): Promise<

9.1.2. getCurrentWallet

11

WalletUtils.ts

connectWallet(): Promise<

('window.ethereum) { o 1
provider = window.ethereum;

arrAddress: provider.request({ method: "eth_requestAccounts"

(larrAddress || arrAddress.length <= 0) { -
arrAddress[0];
(err) { o

We first check if MetaMask has injected the window.ethereum APIL If not, we will not be able to use
the API and so we will just return null to indicate that we could not connect to a wallet.

We then call the eth_requestAccounts API, which gives us an array of addresses. If there is at least
one address, we will return the first one.

9.1.3. getCurrentWallet

WalletUtils.ts

getCurrentWallet(): Promise<

('window.ethereum) { -
provider = window.ethereum;

arrAddress: = provider.request({ method: "eth_accounts", });
('arrAddress || arrAddress.length <= 0) { -
arrAddress[0];
(err) { A

getCurrentWallet is useful in case the user has already connected their wallet to our app and
perhaps refreshed the page or something. Rather than trying to connect again, we can just grab the
current wallet that is connected by using the eth_accounts APIL

Again, we are using null to indicate that no wallet address was found.

12

9.1.4. switchToNetwork

WalletUtils.ts

switchToNetwork(chainld: , rpcUrl:): Promise< > {

('window.ethereum) { -
provider = window.ethereum;

sChainld = ‘0x${chainld.toString(16)}";
provider.request({

method: 'wallet switchEthereumChain',
params: [{ chainld: 1,

b
(switchError:) {

(switchError.code === 4902) {
WalletUtils.addNetwork(chainId, rpcUrl);

switchToNetwork is useful in the event that a user has connected their wallet to our application, but
is currently on the wrong network. In this case, we can allow them to switch to the correct network
that our application needs to work with.

As parameters, we must take the network’s Chain ID and RPC URL. We format the Chain ID
appropriately and then call wallet_switchEthereumChain to attempt to switch to the specified
network. This API will only be successful if the user has already added that network to their wallet.

If the user has not added the network to their wallet, the API will throw an error with code 4902. In
this case, we can then add the network for them using the addNetwork function described next.

9.1.5. addNetwork

13

WalletUtils.ts

addNetwork(chainId: , rpeUrl:): Promise< > {

(!'window.ethereum) { i
provider = window.ethereum;

sChainId = ‘0x${chainId.toString(16)}";
provider.request({
method: 'wallet addEthereumChain',
params: [{ chainld: , rpeUrl:
b
(err) { }

If a user has not yet added the network to their wallet, we can do it for them to make things easier
for them. We take the Chain ID and RPC URL for the network and then call wallet_addEthereumChain
to add the network to their wallet.

This is similar to adding a network in MetaMask:

Networks > Add a network

A malicious network provider can lie about the state of the blockehain and record your network activity. Only add custom
networks you trust,

Network Name New RPC URL
Chain ID Currency Symbol (Optional)

Block Explorer URL [Optional)

I::/ Cancel \::I
9.1.6. React Hook

To make this easier to use in a React application, we will wrap up this functionality inside of a React

14

Hook.

Create a new file called useWallet.ts.

useWallet.ts

{ useState, useEffect, useCallback } from 'react';
WalletUtils from './WalletUtils';

IUseWalletProps {
onWalletAccountChanged?: (address:) =
onWalletConnected?: (address:) => ¢
onWalletDisconnected?: () =>

useWallet(props:) {
{ onWalletAccountChanged, onWalletConnected, onWalletDisconnected } =

—_ S VW OO0 NoOoO Ul B~ W N =,

—_

[isInitialized, setIsInitialized] = useState< >(E
[isConnected, setIsConnected] = useState< >(e
[address, setAddress] = useState< >("");

useEffect(() => {
(!isInitialized) {

setIsInitialized();
WalletUtils.getCurrentWallet().then((address) => {

(!laddress) {

setAddress(address);
setIsConnected();

(onWalletConnected) { onWalletConnected(address ?? ""); }
}
)5
}
}, [address, isInitialized, onWalletConnected]);

_onWalletAccountChanged = useCallback((accounts:) => {
address = accounts.length > @ ? accounts[@] : "";

setAddress(address);
setIsConnected(accounts.length > 0);

(onWalletAccountChanged) { onWalletAccountChanged(address); }
}, [setIsConnected, setAddress, onWalletAccountChanged]);

useEffect(() => {
(!'window.ethereum) { ok

window.ethereum.on("accountsChanged", _onWalletAccountChanged);
}, [_onWalletAccountChanged]);

disconnect = useCallback(() => {
setIsConnected();

setAddress("");

(onWalletDisconnected) { onWalletDisconnected(); }
}, [setIsConnected, setAddress, onWalletDisconnected]);

connect = useCallback(() =>{
address = WalletUtils.connectWallet();

setIsConnected(address !==);
setAddress(address ?? "");

(onWalletConnected) { onWalletConnected(address ?? ""); }
}, [setIsConnected, setAddress, onWalletConnected]);

{ address, isConnected, connect, disconnect };

Now let’s review the code and then explain how to use the hook.

{ useState, useEffect, useCallback } from 'react';
WalletUtils from './WalletUtils';

Here we are importing the WalletUtils functionality that we created earlier, as well as some React
APIs we’ll be using.

IUseWalletProps {
onWalletAccountChanged?: (address:
onWalletConnected?: (address:
onWalletDisconnected?: () =>

We want our hook to be able to report events back to the client, such as when a wallet is connected.
The client may want to do something when this happens, such as recalculate a user’s balance of
ERC-20 tokens. We define an interface with functions that the client can pass into our hook.

[isInitialized, setIsInitialized] = useState<

[isConnected, setIsConnected] = useState<
[address, setAddress] = useState< >(""Y

isInitialized is used to determine whether we have tried to get the connected wallet or not. This
will prevent the code from repeatedly trying to grab the connected wallet after the user has
disconnected.

isConnected tracks whether the user’s wallet is connected or not.

address holds the address of the currently-connected wallet.

{ address, isConnected, connect, disconnect };

Our hook will return some properties and functions that the client can access when they use this
hook. connect and disconnect will allow the client to connect and disconnect a user’s wallet.

useEffect(() => {
(!'window.ethereum) { ok

window.ethereum.on("accountsChanged", _onWalletAccountChanged);
}, [_onWalletAccountChanged]);

We will listen for the accountsChanged event, which tells us when the connected wallet has changed.
WHen this happens, we should update our address state to reflect the newly connected wallet.

You can review the rest of the code on your own. Essentially, we are just calling the functions in
WalletUtils and then updating the state accordingly.

9.1.7. useWallet Usage

Now our hook can be used as simply as...

17

wallet = useWallet();

wallet.connect();
(wallet.isConnected) { console.log("Connected!"); }

9.2. ERC-20 Interaction

ERC20Utils.ts

ERC20Uti1ls {
approve(abiToken: , addrToken: ,
addrSpender: , amount:): Promise< > {

getBalance(addrToken: , addrWallet:): Promise<
window.ethereum == "undefined") { 0}

provider = ethers.providers.Web3Provider (window.ethereum);
erc20 = ethers.Contract(addrERC20, IERC20.abi, provider);
{
balance = erc20.balanceOf(addrWallet);
balance;

(err) {

I

getAllowance(addrToken: , addrOwner: , addrSpender:
: Promise< | > {
(window.ethereum == "undefined") { -

ERC721Utils.ts

approveERC721Token = (abiToken, addrToken, addrApproval) => {
(window.ethereum == "undefined") { { success: , status:
"Ethereum not defined" }; }

signer =
contract

(ethers.providers.Web3Provider(window.ethereum)).getSigner();
= ethers.Contract(addrToken, abiToken, signer);

txHash = contract.setApprovalForAll(addrApproval,);

{ success: , status: "Check out your transaction: " + txHash }
(error) {

{ success: , status: "Something went wrong:

+ error.message }

isERC721ApprovedForAll = (addrERC721, owner, operator) => {
window.ethereum == "undefined") { 5 b

provider = ethers.providers.Web3Provider(window.ethereum);
erc/21 = ethers.Contract(addrERC721, IERC721.abi, provider);

isApproved = erc721.isApprovedForAll(owner, operator);
isApproved;
(err) {

For the approve method, we will need the following

TODO: We don’t need to pass in abiToken

Parameters
abiToken The ABI of the token
addrToken Address of the ERC-20 token

addrSpender Address of the spender of this token

amount Amount you are approving the spender to spend on your behalf

19

9.3. ERC-721 Interaction

ERC721Utils.ts

ERC721Utils {

20

Chapter 10. User Authentication

21

Chapter 11. Firebase Functions

22

Chapter 12. Database Security

23

Chapter 13. Deployment

24

Chapter 14. Miscellaneous

* Connecting a wallet

ERC-721 API

ERC-20 API

e Format wallet address function

Mention the JSON interface stuff (artifacts)
Importance of UNIT TESTING Using TESTNETS wei vs ETH / decimals

Setup stuff... - Setup MetaMask Wallet - Add networks

25

Chapter 15. Part 2

26

Chapter 16. Sample App: NFT Minting Site

27

Chapter 17. Sample App: Coin Exchange

28

Appendix A: Code Reference

A.1. WalletUtils

WalletUtils.ts

{ MetaMaskInpageProvider } from "@metamask/providers";

global {
Window {
ethereum:

o0 ~N o U1 B~ W N =

WalletUtils {
connectWallet(): Promise<

(!'window.ethereum) { i
provider = window.ethereum;

{

arrAddress: provider.request({ method:
"eth_requestAccounts" });
('arrAddress || arrAddress.length <= @) { H
arrAddress[0];
(err) { 2

getCurrentWallet(): Promise<

('window.ethereum) { o}
provider = window.ethereum;

{

arrAddress: provider.request({ method:
"eth_accounts", });
('arrAddress || arrAddress.length <= @) { o}
arrAddress[0];
(err) { 5

switchToNetwork(chainId: , rpeUrl:): Promise

):

('window.ethereum) { Sk
provider = window.ethereum;

sChainId = ‘0x${chainId.toString(16)}";
provider.request({
method: 'wallet switchEthereumChain',
params: [{ chainId: 1,

G
(switchError:) {

(switchError.code === 4902) {
WalletUtils.addNetwork(chainId, rpcUrl);

addNetwork(chainId: , rpeUrl:

(!window.ethereum) { .
provider = window.ethereum;

sChainId = ‘0x${chainId.toString(16)}";
provider.request({
method: 'wallet addEthereumChain',
params: [{ chainId: , rpeUrl:
3
(err) { }

addERC20Token(address: , symbol:
Promise< > {

('window.ethereum) { 0}
provider = window.ethereum;
options = { address:
provider.request({

method: 'wallet watchAsset',

params: { : 'ERC20', options:

(err) { }

): Promise<

, decimals:

, decimals:

A.2. useWallet

useWallet.ts

{ useState, useEffect, useCallback } from 'react';
WalletUtils from './WalletUtils';

IUseWalletProps {
onWalletAccountChanged?: (address:) =2
onWalletConnected?: (address:) =>
onWalletDisconnected?: () =>

I

useWallet(props:) {
{ onWalletAccountChanged, onWalletConnected, onWalletDisconnected } =

—_ S OV OO0 N O Ul B~ W N =

— =

[isInitialized, setIsInitialized] = useState< >(E
[isConnected, setIsConnected] = useState< >()E
[address, setAddress] = useState< >("");:

useEffect(() => {
(!isInitialized) {

setIsInitialized();
WalletUtils.getCurrentWallet().then((address) => {

(!laddress) {

setAddress(address);
setIsConnected();

(onWalletConnected) { onWalletConnected(address ?? ""); }
}
I9K
}

}, [address, isInitialized, onWalletConnected]);
_onWalletAccountChanged = useCallback((accounts:) => {
address = accounts.length > @ ? accounts[0] : "";

setAddress(address);
setIsConnected(accounts.length > 0);

(onWalletAccountChanged) { onWalletAccountChanged(address); }
}, [setIsConnected, setAddress, onWalletAccountChanged]);

useEffect(() => {
(!window.ethereum) { B

window.ethereum.on("accountsChanged”, _onWalletAccountChanged);

() => { window.ethereum.removelistener('accountsChanged’,
_onWalletAccountChanged); };
}, [_onWalletAccountChanged]);

disconnect = useCallback(() => {
setIsConnected();

setAddress("");

(onWalletDisconnected) { onWalletDisconnected(); }
}, [setIsConnected, setAddress, onWalletDisconnected]);
connect = useCallback(() =>{
address = WalletUtils.connectWallet();

setIsConnected(address !==);
setAddress(address ?? "");

(onWalletConnected) { onWalletConnected(address ?? ""); }
}, [setIsConnected, setAddress, onWalletConnected]);

{ address, isConnected, connect, disconnect };

	The Ultimate Guide: React dApps
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Setup
	2.1. Install MetaMask
	2.2. Install Hardhat

	Chapter 3. Project Structure
	Chapter 4. Unit Testing
	Chapter 5. Libraries
	Chapter 6. Data Model
	Chapter 7. Components
	Chapter 8. Client API
	Chapter 9. Miscellaneous
	9.1. Wallet Interaction
	9.1.1. connectWallet
	9.1.2. getCurrentWallet
	9.1.3. getCurrentWallet
	9.1.4. switchToNetwork
	9.1.5. addNetwork
	9.1.6. React Hook
	9.1.7. useWallet Usage

	9.2. ERC-20 Interaction
	9.3. ERC-721 Interaction

	Chapter 10. User Authentication
	Chapter 11. Firebase Functions
	Chapter 12. Database Security
	Chapter 13. Deployment
	Chapter 14. Miscellaneous
	Chapter 15. Part 2
	Chapter 16. Sample App: NFT Minting Site
	Chapter 17. Sample App: Coin Exchange
	Appendix A: Code Reference
	A.1. WalletUtils
	A.2. useWallet

